Hints

davidkurtz's picture

To Hint or not to hint (Application Engine), that is the question

Over the years Oracle has provided a number of plan stability technologies to control how SQL statements are executed.  At the risk of over simplification, Outlines (deprecated in 11g), Profiles, Baselines and Patches work by injecting a set of hints into a SQL statement at parse time.  There is quite a lot of advice from Oracle to use these technologies to fix errant execution plans rather than hint the application.  I think it is generally good advice, however, there are times when this approach does not work well with PeopleSoft, and that is due to the behaviour and structure of PeopleSoft rather than the Oracle database.
davidkurtz's picture

To Hint or not to hint (Application Engine), that is the question

Over the years Oracle has provided a number of plan stability technologies to control how SQL statements are executed.  At the risk of over simplification, Outlines (deprecated in 11g), Profiles, Baselines and Patches work by injecting a set of hints into a SQL statement at parse time.  There is quite a lot of advice from Oracle to use these technologies to fix errant execution plans rather than hint the application.  I think it is generally good advice, however, there are times when this approach does not work well with PeopleSoft, and that is due to the behaviour and structure of PeopleSoft rather than the Oracle database.
Jonathan Lewis's picture

SQL Plan Baselines

Here’s a thread from Oracle-L that reminded of an important reason why you still have to hint SQL sometimes (rather than following the mantra “if you can hint it, baseline it”).

I have a query that takes 77 seconds to optimize (it’s not a production query, fortunately, but one I engineered to make a point). I can enable sql plan baseline capture and create a baseline for it, and given the nature of the query I can be confident that the resulting plan will always be exactly the plan I want. If I have to re-optimize the query at any time  (because it runs once per hour, say, and is constantly being flushed from the library cache) how much time will the SQL plan baseline save for me ?

The answer is NONE.

The first thing that the optimizer does for a query with a stored sql plan baseline is to optimize it as if the baseline did not exist.

Jonathan Lewis's picture

Delete Costs

One of the quirky little anomalies of the optimizer is that it’s not allowed to select rows from a table after doing an index fast full scan (index_ffs) even if it is obviously the most efficient (or, perhaps, least inefficient) strategy. For example:

Jonathan Lewis's picture

Delete Costs

One of the quirky little anomalies of the optimizer is that it’s not allowed to select rows from a table after doing an index fast full scan (index_ffs) even if it is obviously the most efficient (or, perhaps, least inefficient) strategy. For example:

Jonathan Lewis's picture

Ignoring Hints

Does Oracle ignore hints – not if you use them correctly, and sometimes it doesn’t ignore them even when you use them incorrectly!

Here’s an example that I’ve run on 11.2.0.4 and 12.1.0.1


create table t1
as
with generator as (
	select	--+ materialize
		rownum id
	from dual
	connect by
		level <= 1e4
)
select
	rownum			id,
	rownum			n1,
	rpad('x',100)		padding
from
	generator	v1
;

begin
	dbms_stats.gather_table_stats(
		ownname		 => user,
		tabname		 =>'T1',
		method_opt	 => 'for all columns size 1'
	);
end;
/

create index t1_i1 on t1(id);
alter index t1_i1 unusable;

select n1 from t1 where id = 15;
select /*+ index(t1 (id)) */ n1 from t1 where id = 15;

Any guesses about the output from the last 4 statements ?

Jonathan Lewis's picture

Recursive subquery factoring

This is possibly my longest title to date – I try to keep them short enough to fit the right hand column of the blog without wrapping – but I couldn’t think of a good way to shorten it (Personally I prefer to use the expression CTE – common table expression – over “factored subquery” or “subquery factoring” or “with subquery”, and that would have achieved my goal, but might not have meant anything to most people.)

If you haven’t come across them before, recursive CTEs appeared in 11.2, are in the ANSI standard, and are (probably) viewed by Oracle as the strategic replacement for “connect by” queries. Here’s a simple (and silly) example:

Jonathan Lewis's picture

Caution – hints

Here’s a little example of why you should be very cautious about implementing undocumented discoveries. If you take a look at the view v$sql_hints in 11.2.0.4 you’ll discover a hint (no_)cluster_by_rowid; and if you look in v$parameter you’ll discover two new parameters _optimizer_cluster_by_rowid and _optimizer_cluster_by_rowid_control.

It doesn’t take much imagination to guess that the parameters and hint have something to do with the costs of accessing compressed data by rowid on an Exadata system (see, for example, this posting) and it’s very easy to check what the hint does:

Jonathan Lewis's picture

RAC Plans

Recently appeared on Mos – “Bug 18219084 : DIFFERENT EXECUTION PLAN ACROSS RAC INSTANCES”

Now, I’m not going to claim that the following applies to this particular case – but it’s perfectly reasonable to expect to see different plans for the same query on RAC, and it’s perfectly possible for the two different plans to have amazingly different performance characteristics; and in this particular case I can see an obvious reason why the two nodes could have different plans.

Here’s the query reported in the bug:

Jonathan Lewis's picture

Index Hash

I’m afraid this is one of my bad puns again – an example of the optimizer  making a real hash of the index hash join. I’m going to create a table with several indexes (some of them rather similar to each other) and execute a query that should do an index join between the obvious two indexes. To show how obvious the join should be I’m going to start with a couple of queries that show the cost of simple index fast full scans.

Here’s the data generating code:

Syndicate content