linux

tanelpoder's picture

I’m speaking at Advanced Spark Meetup & attending Deep Learning Workshop in San Francisco

In case you are interested in the “New World” and happen to be in Bay Area this week (19 & 21 Jan 2017), there are two interesting events that you might want to attend (I’ll speak at one and attend the other):

Advanced Spark and TensorFlow Meetup

I’m speaking at the advanced Apache Spark meetup and showing different ways for profiling applications with the main focus on CPU efficiency. This is a free Meetup in San Francisco hosted at AdRoll.

fritshoogland's picture

An introduction to PCP / Performance Co Pilot on Oracle Linux

I was investigating gathering performance data on (oracle) linux servers recently and came across Performance Co-Pilot (PCP). I have come across this product regularly in the past, but it seemed somewhat abstract to me, and I never ran into any actual usage. And we got sar for linux performance data and for the Oracle database we got oswatcher (and it’s exadata cousin exawatcher) and TFA right? How wrong I was.

First let me explain a few things.

martin.bach's picture

Creating a RAC 12.1 Data Guard Physical Standby environment (2)

In the first part of this mini-series you saw me define the environment as well as creating a primary database. With that out of the way it’s time to think about the standby. Before the standby can be created, a few preparations are necessary both on the primary as well as the standby cluster.

NOTE: As always, this is just a demonstration using VMs in my lab, based on my notes. Your system is most likely different, so in real-life you might take a different approach. The techniques I am using here were suitable for me, and my own small scale testing. I tried to make sure they are valid, but you may want to allocate more resources in your environment. Test, test, test on your own environment on test kit first!

Preparing the Creation of the Standby Database

martin.bach's picture

Creating a RAC 12.1 Data Guard Physical Standby environment (1)

I have just realised that the number of posts about RAC 12c Release 1 on this blog is rather too small. And since I’m a great fan of RAC this has to change :) In this mini-series I am going to share my notes about creating a Data Guard setup on my 2 node 12.1.0.2.161018 RAC primary + identical 2 node RAC standby system in the lab.

NOTE: As always, this is just a demonstration using VMs in my lab, based on my notes. Your system is most likely different, so in real-life you might take a different approach. The techniques I am using here were suitable for me, and my own small scale testing. I tried to make sure they are valid, but you may want to allocate more resources in your environment. Test, test, test on your own environment on test kit first!

The lab Environment

My environment consists of the following entities:

fritshoogland's picture

Advanced Oracle memory profiling using pin tool ‘pinatrace’

In my previous post, I introduced Intel Pin. If you are new to pin, please follow this link to my previous post on how to set it up and how to run it.

One of the things you can do with Pin, is profile memory access. Profiling memory access using the pin tool ‘pinatrace’ is done in the following way:

$ cd ~/pin/pin-3.0-76991-gcc-linux
$ ./pin -pid 12284 -t source/tools/SimpleExamples/obj-intel64/pinatrace.so

The pid is a pid of an oracle database foreground process. Now execute something in the session you attached pin to and you find the ‘pinatrace’ output in $ORACLE_HOME/dbs:

dbakevlar's picture

SQL Server on Linux

I thought I’d do something on Oracle this week, but then Microsoft made an announcement that was like an early Christmas present-  SQL Server release for Linux.

fritshoogland's picture

Introduction to Intel Pin

This blogpost is an introduction to Intel’s Pin dynamic instrumentation framework. Pin and the pintools were brought to my attention by Mahmoud Hatem in his blogpost Tracing Memory access of an oracle process: Intel PinTools. The Pin framework provides an API that abstracts instruction-set specifics (on the CPU layer). Because this is a dynamic binary instrumentation tool, it requires no recompiling of source code. This means we can use it with programs like the Oracle database executable.
The Pin framework download comes with a set of pre-created tools called ‘Pintools’. Some of these tools are really useful for Oracle investigation and research.

fritshoogland's picture

The curious case of the missing semctl call

This article is about the internals of how the Oracle database handles transactions. In this case the communication mechanism of foreground sessions to the logwriter process is examined. The tests in this article have been executed using the following versions:
– Oracle database 12.1.0.2.161018
– Oracle linux 7.2, kernel 4.1.12-61.1.14.el7uek.x86_64 (UEK4)

martin.bach's picture

Building an RPM for the Oracle database on Oracle Linux 7

Thinking about automation a lot, especially in the context of cloud computing, I have decided to create a small series of related posts that hopefully help someone deploying environments in a fully automated way. As my colleague @fritshoogland has said many times: the only way to deploy database servers (or any other server for that matter) in a consistent way, is to do it via software. No matter how hard you try to set up 10 identical systems manually, there will be some, maybe ever so subtle, differences between them. And with the cloud you probably have 42 systems or more to deal with! In this context, my first post could be a building block: the provisioning of the Oracle RDBMS the form of an RPM.

The idea

In a nutshell, I would like to

fritshoogland's picture

A technical security analysis of the snmp daemon on Exadata

Recently I was asked to analyse the security impact of the snmp daemon on a recent Exadata. This system was running Exadata image version 12.1.2.1.3. This blog article gives you an overview of a lot of the things that surround snmp and security.

First of all what packages are installed doing something with snmp? A list can be obtained the following way:

# rpm -qa | grep snmp
net-snmp-utils-5.5-54.0.1.el6_7.1.x86_64
net-snmp-libs-5.5-54.0.1.el6_7.1.x86_64
net-snmp-5.5-54.0.1.el6_7.1.x86_64
sas_snmp-14.02-0103.x86_64

Essentially the usual net-snmp packages and a package called ‘sas_snmp’.

A next important thing is how the firewall is configured. However, the default setting of the firewall on the compute nodes with exadata is the firewall turned off:

Syndicate content