Jonathan Lewis's picture

Column Groups

I think the “column group” variant of extended stats is a wonderful addition to the Oracle code base, but there’s a very important detail about using the feature that I hadn’t really noticed until a question came up on the OTN database forum recently about a very bad join cardinality estimate.

The point is this: if you have a multi-column equality join and the optimizer needs some help to get a better estimate of join cardinality then column group statistics may help if you create matching stats at both ends of the join. There is a variation on this directive that helps to explain why I hadn’t noticed it before – multi-column indexes (with exactly the correct columns) have the same effect and, most significantly, the combination of  one column group and a matching multi-column index will do the trick.

Jonathan Lewis's picture

Column Groups

I think column groups can be amazingly useful in helping the optimizer to generate good execution plans because of the way they supply better details about cardinality; unfortunately we’ve already seen a few cases (don’t forget to check the updates and comments) where the feature is disabled, and another example of this appeared on OTN very recently.

Modifying the example from OTN to make a more convincing demonstration of the issue, here’s some SQL to prepare a demonstration:

Jonathan Lewis's picture


I had a recent conversation at Oracle OpenWorld 2015 about a locking anomaly in a 3-node RAC system which was causing unexpected deadlocks. Coincidentally, this conversation came about shortly after I had been listening to Martin Widlake talking about using the procedure dbms_stats.set_table_prefs() to adjust the way that Oracle calculates the clustering_factor for indexes. The juxtaposition of these two topics made me realise that the advice I had given in “Cost Based Oracle – Fundamentals” 10 years ago was (probably) incomplete, and needed some verification. The sticking point was RAC.

Jonathan Lewis's picture

Histogram Limit

A surprising question came up on OTN a couple of days ago:

Why does a query for “column = 999999999999999999” run slower than a query for “column > 999999999999999998” (that’s 18 digit numbers, if you don’t want to count them). With the equality predicate the query is very slow, with the range-based predicate perfomance is good.

Jonathan Lewis's picture


Here’s a live one from OTN – here are a couple of extracts from the problem statement:

We’re experiencing an issue where it seems that the query plan changes from day to day for a particular procedure that runs once a night.
It’s resulting in a performance variance of 10 second completion time vs 20 minutes (nothing in between).
It started occurring about 2 months ago and now it’s becoming more prevalent where the bad query plan is coming up more often.
I noticed that the query plans vary for a simple query.
We do run gather statistics every night. (DBMS_STATS.GATHER_SCHEMA_STATS (ownname=>sys_context( ‘userenv’, ‘current_schema’ ), estimate_percent => 1);)

The query and two execution plans look like this:

Jonathan Lewis's picture

Histogram Tip

I’ve just responded to the call for items for the “IOUG Quick Tips” booklet for 2015 – so it’s probably about time to post the quick tip that I put into the 2014 issue. It’s probably nothing new to most readers of the blog, but sometimes an old thing presented in a new way offers fresh insights or better comprehension.

Histogram Tips

A histogram, created in the right way, at the right time, and supported by the correct client-side code, can be a huge benefit to the optimizer; but if you don’t create and use them wisely they can easily become a source of inconsistent performance, and the automatic statistics gathering can introduce an undesirable overhead during the overnight batch. This note explains how you can create histograms very cheaply on the few columns where they are most likely to have a beneficial effect.

Jonathan Lewis's picture

Descending Indexes

I’ve written about optimizer defects with descending indexes before now but a problem came up on the OTN database forum a few days ago that made me decide to look very closely at an example where the arithmetic was clearly defective. The problem revolves around a table with two indexes, one on a date column (TH_UPDATE_TIMESTAMP) and the other a compound index which starts with the same column in descending order (TH_UPDATE_TIMESTAMP DESC, TH_TXN_CODE). The optimizer was picking the “descending” index in cases where it was clearly the wrong index (even after the statistics had been refreshed and all the usual errors relating to date-based indexes had been discounted). Here’s an execution plan from the system which shows that there’s something wrong with the optimizer:

Jonathan Lewis's picture

Spatial space

One thing you (ought to) learn very early on in an Oracle career is that there are always cases you haven’t previously considered. It’s a feature that is frequently the downfall of “I found it on the internet” SQL.  Here’s one (heavily paraphrased) example that appeared on the OTN database forum a few days ago:

select table_name,round((blocks*8),2)||’kb’ “size” from user_tables where table_name = ‘MYTABLE';

select table_name,round((num_rows*avg_row_len/1024),2)||’kb’ “size” from user_tables where table_name = ‘MYTABLE';

The result from the first query is 704 kb,  the result from the second is 25.4 kb … fragmentation, rebuild, CTAS etc. etc.

Jonathan Lewis's picture

Quantum Data

That’s data that isn’t there until you look for it, sort of, from the optimizer’s perspective.

Here’s some code to create a sample data set:

create table t1
with generator as (
	select	--+ materialize
		rownum id
	from dual
	connect by
		level <= 1e4
	rownum					id,
	mod(rownum-1,200)			mod_200,
	mod(rownum-1,10000)			mod_10000,
	lpad(rownum,50)				padding
	generator	v1,
	generator	v2
	rownum <= 1e6

		ownname		 => user,
		tabname		 =>'T1',
		method_opt 	 => 'for all columns size 1'

Now derive the execution plans for a couple of queries noting, particularly, that we are using queries that are NOT CONSISTENT with the current state of the data (or more importantly the statistics about the data) – we’re querying outside the known range.

Jonathan Lewis's picture


“You can’t compare apples with oranges.”

Oh, yes you can! The answer is 72,731,533,037,581,000,000,000,000,000,000,000.

Syndicate content